3.2.11 \(\int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx\)

Optimal. Leaf size=431 \[ -\frac {\sqrt {f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f} \]

________________________________________________________________________________________

Rubi [A]  time = 0.65, antiderivative size = 431, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {989, 621, 206, 1032, 724} \begin {gather*} -\frac {\sqrt {f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2),x]

[Out]

(Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/f - (Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f
]) + f*(2*a*f - b*(e - Sqrt[e^2 - 4*d*f]))]*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[
e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a +
b*x + c*x^2])])/(Sqrt[2]*f*Sqrt[e^2 - 4*d*f]) + (Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e
+ Sqrt[e^2 - 4*d*f]))]*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*
Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt
[2]*f*Sqrt[e^2 - 4*d*f])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 989

Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (e_.)*(x_) + (f_.)*(x_)^2), x_Symbol] :> Dist[c/f, Int[1/Sq
rt[a + b*x + c*x^2], x], x] - Dist[1/f, Int[(c*d - a*f + (c*e - b*f)*x)/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^
2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx &=-\frac {\int \frac {c d-a f+(c e-b f) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{f}+\frac {c \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{f}\\ &=\frac {(2 c) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f}-\frac {\left (2 f (c d-a f)-(c e-b f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f \sqrt {e^2-4 d f}}+\frac {\left (2 f (c d-a f)-(c e-b f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}+\frac {\left (2 \left (2 f (c d-a f)-(c e-b f) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f \sqrt {e^2-4 d f}}-\frac {\left (2 \left (2 f (c d-a f)-(c e-b f) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\sqrt {c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )} \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e+\sqrt {e^2-4 d f}\right )\right )} \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.74, size = 417, normalized size = 0.97 \begin {gather*} \frac {\sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f-b \left (\sqrt {e^2-4 d f}+e-2 f x\right )-2 c x \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )-\sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+b \left (\sqrt {e^2-4 d f}-e+2 f x\right )+2 c x \left (\sqrt {e^2-4 d f}-e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2),x]

[Out]

(Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/f + (Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f
]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*ArcTanh[(4*a*f - 2*c*(e + Sqrt[e^2 - 4*d*f])*x - b*(e + Sqrt[e^2 -
 4*d*f] - 2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f])
)]*Sqrt[a + x*(b + c*x)])] - Sqrt[f*(-(b*e) + 2*a*f + b*Sqrt[e^2 - 4*d*f]) + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d
*f])]*ArcTanh[(4*a*f + 2*c*(-e + Sqrt[e^2 - 4*d*f])*x + b*(-e + Sqrt[e^2 - 4*d*f] + 2*f*x))/(2*Sqrt[2]*Sqrt[f*
(-(b*e) + 2*a*f + b*Sqrt[e^2 - 4*d*f]) + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + x*(b + c*x)])])/(Sqrt
[2]*f*Sqrt[e^2 - 4*d*f])

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.00, size = 402, normalized size = 0.93 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+\text {$\#$1}^2 b e+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e-4 \text {$\#$1} b \sqrt {c} d+a^2 f-a b e+b^2 d\&,\frac {\text {$\#$1}^2 c e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 b f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} c^{3/2} d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+b c d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-a c e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} a \sqrt {c} f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )}{-2 \text {$\#$1}^3 f+3 \text {$\#$1}^2 \sqrt {c} e+2 \text {$\#$1} a f-\text {$\#$1} b e-4 \text {$\#$1} c d-a \sqrt {c} e+2 b \sqrt {c} d}\&\right ]}{f}-\frac {\sqrt {c} \log \left (-2 \sqrt {c} f \sqrt {a+b x+c x^2}+b f+2 c f x\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2),x]

[Out]

-((Sqrt[c]*Log[b*f + 2*c*f*x - 2*Sqrt[c]*f*Sqrt[a + b*x + c*x^2]])/f) + RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sq
rt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (b*c*d*Log[
-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*c*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(3/2)*
d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] -
 #1]*#1 + c*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 - b*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^
2] - #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c]*e - 4*c*d*#1 - b*e*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3) & ]/
f

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 6019, normalized size = 13.97 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{f\,x^2+e\,x+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2),x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x + c x^{2}}}{d + e x + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(d + e*x + f*x**2), x)

________________________________________________________________________________________